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ATOMIZATION OF A TURBULENT LAYER OF A MIXTURE* 

V. E. Neuvazhaev UDC 532.526.4 

This article studies the problem of the atomization of a turbulent layer of a mixture 
formed at the interface of two incompressible media with constant but different densities. 
It is found that the solution tends toward similarity for long periods of time. The degree 
of similarity, meanwhile, cannot be determined from dimensional analysis. Instead, it is 
found during the solution of a boundary-value problem. The degree of similarity is a function 
of the empirical constants of the model. Similarity solutions are constructed for several 
parameters, and the dependence of the degree of similarity on the constants of the model is 
graphed. A formula for the degree of similarity is obtained in an approximation in which the 
turbulent velocity is constant with respect to the space variable, which the solution for the 
density of the mixture is expressed through a probability integra I . A special case of problem 
for a uniform medium was examined in [i, 2]. The results of calculations reported there 
agree with the values obtained in the present study. 

i. Formulation of the Problem. A space is filled with two incompressible fluids with 
the densities p~ and p~. The interface passes over a plane. Let a plane turbulent layer of 
the width L0, consisting of a mixture of both substances, be created at the initial moment of 
time in the neighborhood of the interface. Such a state can arise, for example, due to the 
accelerated motion of an interface in the time interval to with the appropriate sign of 
acceleration. Here, a turbulent layer of the mixture of the width L 0 is created during the 
time t O and is associated with a certain initial turbulent velocity v(x, to). In the absence 
of turbulence sources, the initial layer of the mixture expands and envelops adjacent fluids. 
The turbulent energy, determined through the characteristic turbulent velocity, decays in 
this case and dissipates into heat. 

We will use the semiempirical model in [3] to describe the resultant turbulent mixing. 
This model is based on the balance equation for the kinetic turbulent energy v2/2 and contains 
three constants. The equations are obtained from the conservation laws for a compressible 
fluid by means of the substitution p = p@ p',u = ~+ u', p =p@p' and corresponding averaging, 
with the third correlations and the products of the second correlations being discarded. We 
find from the equation of continuity that ~/0t @ ~u/az = O, u =-pT-u'~. Here, we used the 
incompressibility condition u = 0. 

The equation for the kinetic turbulent energy follows from the continuity law and the 
momentum conservation law [3, 4]: (l/2)(Opv2/Ot @ uOpv2/Ox) = --@vs/1 @ (5/6~v~O~Ox. Applying the 
Prandtl hypothesis p'u ~ =--Iv0~0x, to the equations, we have 

Op/Ot = O(IvOp/Ox)/Ox; (I.i) 

Opv 2 lv 0 In p Opv 2 
'20t" 2 Ox Ox 

(1.2) 
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Fig. I 

where p is the density of the mixture; p is replaced by p. The characteristic turbulence 
scale ~ is linearly related to the effective width of the mixing region L 

I = a L  (1.3) 

(~, v, fl are constants of the model, and the form of L is determined below). 

In contrast to [3], Eq. (1.2) does not contain a generating term. The first term in the 
right side generates dissipation of turbulent energy and actually determines the law of decay 
of the turbulence. The second (diffusional) term, with the coefficient fl, was introduced in 
[4] to describe spatial spreading of turbulence. 

The following problem is posed for system (i.I)-(1.3): determine the solution at t > 0 if 
at the initial moment (t = 0) 

u(O, x) = ~@), p(O, x) = p0(x), Ixl ~ Lo/2 ( 1 . 4 )  

( v 0 ( x ) ,  p0(x)  a r e  f u n c t i o n s  c h a r a c t e r i z i n g  t h e  t u r b u l e n t  m i x t u r e ) .  The c o o r d i n a t e  o r i g i n  i s  
p l a c e d  a t  t h e  m i d d l e  o f  t h e  l a y e r  ( F i g .  1 ) .  The b o u n d a r y  c o n d i t i o n s  on t h e  l e f t  and  r i g h t  
m i x i n g  f r o n t s  x ffi x 2 ( t )  and  x = x l ( t )  h a v e  t h e  f o r m  

x = x~ (t): v [x~ (t), t] = o, p~ Ix~ (0 ,  t] = pg, ( 1 . 5 )  

x = x l  ( t ) :  v [x l  ( t ) ,  t] = 0,  e l  [z  I ( t ) ,  t] = p~.  

The above problem is not self-similar. However, for long periods of time when t >> t o 
and L >> L0, the initial data should be forgotten and the solution generally tends toward the 
limiting case. 

2. Similarity Solution. System (1ol)-(1.3) allows the similarity transformation 

X = ~kT B/(B+I), U =~T  (B-1)/(B+I), O = p~A. (2. l) 

Here, x0 is a dimensional constant determined by the initial data (1.4); B is an arbitrary 
dimensionless constant, the similarity index; A, f(%), A(%) are the dimensionless representa- 
tives of length, velocity, and density; r is a new variable related of time by the equation 

d~dt  = l. ( 2 . 2 )  

It follows from (2.1) that 

L = X o ( ~ o . 9 - - ~ o . 1 ) ~ B / ( B + I ) ,  ( 2 . 3 )  

where ~o.9 and ~o.1 correspond to the coordinates at which the dimensionless density ~ = (nA 
--l)/(n- I) (n = p~/p~) takes values of 0.9 and 0.i. Here, we have chosen the effective width 
in accordance with [3]. Otherwise, divergence is seen in the limiting case n = ~. 

We will use the new variables to reduce (i.I)-(1.3) to a system of ordinary differential 
equations. For this, we substitute (2.1)-(2.3) into (1.1)-(1.3): 

y ( ( - -B / (B  + t))~ - -  ~') = (yz + 2y')~; 

2~/~(~2~') ' + [(B/(B + t))L + (1 + 2~);y~15 ' - -  

- -  v~2/~2(~o. 9 - -  ~o.1) 2 - -  [(B - -  t) /(B q- t ) ]~  - -  (~/3)y2[(B/(B + t))L + ~yz] = 0. 

The prime denotes differentiation with respect to ~. In deriving (2.4) and (2.5), 
the substitution y2 = A'/A, allowing us to reduce the order of the first equation. 
conditions (1.5) take the following form in dimensionless variables (2.6) 

(2.4) 

(2.5) 

we used 
Boundary 
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=%2:~2 = O, A - -  t/n; % =  %1: ~t = 0, A = 1. ( 2 . 6 )  

The solution of the problem for system (2.4)-(2.5) with boundary conditions for the 
fronts (2.6) is very problematic, especially since the equation has a singularity at points 
(2.6): the coefficient f2 with the higher derivative vanishes. 

However, there is a universal method of solving the above boundary-value problem - 
numerical integration of the initial equations in partial derivatives (1.1)-(1.3) with initial 
conditions (1.4). We numerically integrated the initial gasdynamic equations (1)-(5) from 
[3]. Here, incompressibility was simulated by assigning a sufficiently high initial sonic 
velocity. We thus establish the fact of an asymptotic solution, which is determined simul- 
taneously. Before going on to discuss the results of the numerical integration, we will make 
two observations. 

Note i. For a homogeneous medium n = I, Eq. (2.4) has the trivial solution y = 0, while 
(2.5) reduces to the form 

( ~ ' ) ' + y - 4 T Z ~ ' - -  ~(~o. _~o .0  B + t  ~ = 0 .  ( 2 . 7 )  

This case was examined in [I, 2], where it was noted that the similarity index B must be 
determined during the solution of the boundary-value probleml In fact, the mixing fronts are 
located symmetrically ~I = --%2 = %0. The problem in the new variables ~ and $ (~ = %/~0, 
= ~/%~) can be reduced to a boundary-value problem on the interval [0, I] with a symmetry 
condition at the point ~ ffi 0 

=0 (2.8) 

and a completely determined solution at the point ~ ffi I 

(B + i) 4~ (I (B + i) 4~ (i -- ~2 + ... (2.9) 

In the variables ~ and f, we write Eq. (2.7) in the form 

(2~) (~')' + (S/(S + i)) ~ -- v@/(4~%~,~) -- (~B -- I)7(B + I))$ = 0. 

We find the solution by numerical integration of the last equation. Starting from the point 
= 1 in expansion (2.9) and integrating to the point ~ = I, we select a value of the similar- 

ity parameter such that the condition at the center of symmetry (2.8) is satisfied. 

Note 2. The degree of similarity B is a function of the model constants ~, a, and v. 
The last two constants appear in the form of the ratio v/a 2. This fact was not noted in [I, 
2], where the coefficients of Eq. (3.6) depend on the parameters ~ and ~. Replacement of the 
sought solution in [I, 2] by the new solution ~(~=~2~) leads to an equation with one 
coefficient proportional to v/~ 2 (in [i, 2], v = c, ~ = 0.25). 

3. Results of the Calculations and Discussion. Figures 2-6 show the results of numeri- 
cal integration of the initial equations in partial derivatives. The solution was obtained 
in the program TURINB by the method in [3]. As the initial data we took the following values 

of v0(x ) and p0(x): v0(x ) = v 0 - constant, p(0, x)=p~ +(p~--p~)(x/L o+0.5), Ix]~Lo/2. 

We examined the dependence of the solution on the initial parameters ~, v/a 2, and n. It 
was established that the values of fl and n have a slight effect on the degree of similarity 
B. This follows from Fig. 2, where the dependence of the degree B on the ratio v/~ 2 is shown 
at n = i. The points show results of numerical integration with fl ~ 0.25, while the curve 
shows the approximate relation given by Eq. (4.6). We also numerically determined the solu- 
tion at ~ = 0.75. The difference in the values of B is less than i~ and cannot be discerned 
in the figures. 

Figure 3 shows results of calculations with a fixed value of the coefficient ~ (fl = 
0.25) and n - 3; I0; 20 (points 1-3) in relation to v/a z. 

Profiles of the dimensionless velocity f and density ~ are shown by Figs. 4 and 5, 
respectively. The structure of the solution in the neighborhood of the front follows from 
the expansion ~ = [B%~/(4(B @ I)~)](%~ -- %) ~- .... y = Di(%i- %)(4~-i)/2 @ ... (i := i, 2) (Dg are con- 
stants). The expansion was obtained with finite values of AI and A 2. The mixing front is 
absent only in the approximate solution of Part 4, where the turbulent velocity ~ is assumed 
to be independent of the space coordinate. The expansion for the function y is nonanalytical 
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in character. In this sense, the value fl = 0.25 is critical. For this value, there is an 
expansion in the form of a series in integral powers, while the function y takes a finite 
value at the points A z and A 2. 

The profile of velocity f is symmetrical at n = i, but the symmetry disappears if n > I: 
the maximum value of velocity shifts in the direction of the lighter substance with an in- 
crease in n. The mixing front also moves in this direction. Figure 6 shows the arrival of 
the problem at a similarity regime with initial data (1.4) and ~/~2 = 12.5. The initially 
nonsimilar velocity and density profiles also approach the similarity profiles in the limit, 
the latter being depicted in Figs. 4 and 5. 

~. Approximateiiii$olution. Analyzing the profiles of the solutions obtained (see Fig. 
4), we see that turbulent velocity is bell-shaped in character in the mixing region. Thus, 
as in [5], we can construct an approximate solution by replacing turbulent velocity in the 
mixing region with a constant. To do this, we average Eq. (1.2) over the mixing region: 

- =  = _ k = 0 , 2 5  + _ _ y _ v  2tit T '  1 6 ~  2 + 3u ~ - - ~ ) '  ( 4 . 1 )  

d-~ -~ lYdt; ( 4 . 2 )  

8 = 0,5(1 + 5))); ( 4 . 3 )  

L - -  4~0T 0.5, qo = 0 , 9 0 6 .  ( 4 . 4 )  

Here ,  we ha ve  a l s o  w r i t t e n  o u t  t he  s o l u t i o n  f o r  L and 5; ~ i s  t h e  p r o b a b i l i t y  i n t e g r a l :  ~p . . ,  

2 t~ 

(~1) = ~Jexp(--~li)dq. We used the solution for density (4.3) in deriving (4.1) . Equation 
0 

(1.2) was averaged by integration over the mixing region Ixl _< L/2. First, in (Io2), we 
replaced the time t by the variable r, and after integration over the mixing region the 
corresponding integrals were replaced by approximate expressions 

jO Oov",  0 (v'ZM) 
'_ ax  
OT 07~ ' 

L 
2 

Op Ov 2 OP 
-O'ffxoTxdX~ -~-Ix=o J ov2 -' ~x ax 

L L Ixi4-- Ixl4-- 
2 2 

=0, 
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v2 (Olnp l  2 /Olno\ 2 -~ 
\ Ox ] p d x ~  t - - !  vL~I, k Ox 7~=0 L Ix14-- 2 

M =  ~ p dx = P~ + P~ L, Olnp r n - - t  
2 ~ -- (n + t) (nT') ~ I~l..<n-- 

2 

Equations (4.1)-(4.4) are integrated and the solution is written in the form 

L = At  1/(1+2~), ~ = [A/(8aN~ (i + 2k))] t -2h/(l+2k). ( 4 . 5 )  

Here, A is a constant determined by the initial data (1.4). Comparing Eqs. (4.5) and (2.3), 
we find the explicit expression 

B = | / [ 1 . 5  + w/(8N~ ~) + (1 /3~)( (n--  t)/(n + l))~], ( 4 . 6 )  

which  i s  a l s o  v a l i d  a t  n = 1. The r e l a t i o n  f o r  t h i s  c a s e  i s  shown b y  t h e  c u r v e  i n  F i g .  2. 
I t  s h o u l d  be  n o t e d  t h a t  Eq. ( 4 . 6 )  c a n  a l s o  be  o b t a i n e d  b y  c o n s t r u c t i n g  t h e  a p p r o x i m a t e  s o l u -  
t i o n  f o r  s y s t e m  ( 2 . 4 ) - ( 2 . 5 ) .  T h i s  was done i n  t h e  a p p e n d i x .  E v a l u a t i o n  ( 4 . 6 )  i s  q u i t e  
s a t i s f a c t o r y  f o r  t h e  g e n e r a l  c a s e  a s  w e l l .  The l i n e  i n  F i g .  3 shows t h e  d e g r e e  B f rom Eq. 
( 4 . 5 )  w i t h  n = 3. The r e s u l t s  o f  t h e  n u m e r i c a l  i n t e g r a t i o n  a r e  c o m p a r e d  w i t h  a p p r o x i m a t e  
f o r m u l a  ( 4 . 6 )  i n  F i g s .  2 and  3, i l l u s t r a t i n g  t h e  good a c c u r a c y  o f  t h e  a p p r o x i m a t e  f o r m u l a .  
The n u m e r i c a l  r e s u l t s  [1,  2] a g r e e  w i t h  t h e  c u r v e  i n  F i g .  2. 

I n  c o m p a r i n g  B, i t  s h o u l d  be  k e p t  i n  mind t h a t  t h e  v a l u e  o f  t h e  c o n s t a n t  a depends  on 
the  w i d t h  u s e d  i n  Eq. ( 1 . 3 ) .  Thus ,  i f  t h e  t o t a l  w i d t h  L t f i g u r e s  i n  t h e  mode l ,  t h e n  t h e  
c o n s t a n t s  a t and  a w i l l  be  c o n n e c t e d  by  t h e  r e l a t i o n  ~tL t ~ aL.  

The problem is simplified only slightly for an arbitrary value of n at w ~ 0, and the 
degree B also remains indeterminate and is found during the solution of the problem. The 
only exception is the value of the parameter n equal to i, when B = 2/3. The overall result 
obtained at n ~ 1 follows from approximate expression (4.5) for B. It also follows from the 
form of Eq. (1.2): the law of conservation of initial turbulent energy does not hold in the 
case of arbitrary n. 

Appendix. We will construct an approximate solution of system (2.4)-(2.5). To do this, 
we ignore the term f' in (2.4) and we replace the function f by the constant f0. We determine 
the latter by approximate integration of Eq. (2.5). As a result 

--B/((B ~, l)~o)gE = y3 + 2y'; 
( i  + B) ~o = (i  - -  i.5S)/(v/(4cc~,~a) + g~/~). 

(A.I) 

(A.2) 

The last relation was obtained as follows. 
took the integral over the region [--%0,i~ %0a], 
equalities 

Equation (2.5) was multiplied by ~ and we 
from both sides. Here, we used the approximate 

~0.I 

g-4--7 ~ + ( l  + 21~) ~y~ ~ '  d~ ~_ - -  ~ +----i o.~o, 
-~o.1 

~*o.1 
j '  ~2y2 (~-~@ l ~ -3c ~g2) d~ ~---- 2.~4 (0) ~3~,o.1 �9 

--k0,1 

Differential equation (A.I) for the function y is the Bernoulli equation. It is in- 
tegrated, and the solution is represented in the form A = I/y2(O) @ [((I @ B)/(2B))~o~]~176 
((2(B + t) [o)~ 

Satisfying boundary conditions (2.6) , we have 

y] = 2ft/(n + i), [2 (l + B) ~d~] ~ = (n -- i)/n. (A. 3) 

We find from the condition 6(A0.i) = 0.I that 

~o,~ = ~0(n - -  t ) / (a~ 

We can use Eqs. (A.2)-(A.4) to determine the similarity index B. 
index coincides identically with Eq. (4.6). 

(A.4) 

The expression for the 
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NUMERICAL STUDY OF SWIRLING ONE- AND TWO-PHASE 

TURBULENT FLOWS IN A CYLINDRICAL CHANNEL 

V. V. Novomlinskii and M. P. Strongin UDC 532.517~4 

Turbulent swirling flows are widely used to intensify heat and mass transfer processes 
in different types of processing units. Examples of the latter are plasma-chemical reactors 
plasmatrons, combustion chambers, scrubbers, etc. To make these units more efficient, it is 
necessary to make a detailed study of the hydrodynamics in swirling flows. 

It is known that swirling flows are characterized by highly curved streamlines and the 
development of recirculation zones. The location and dimensions of these zones depend to a 
considerable extent on the intensity of swirling and the configuration of the boundaries of 
the flow. The dimensions of the recirculation zones also depend on the "charging" of the 
flow with particles in the case of dispersed-gas flows. The study of vortical flows with a 
disperse phase is complicated by the need to allow for dynamic interaction of the phases. 
This, together with the problem of modeling the turbulence, makes it more difficult to numer- 
ically study such flows. The theoretical and experimental investigation of swirling flows 
was given great impetus in [1-3]. 

I. Swirling Turbulent One-Phase Flows. The large amount of interest in intensive swirl- 
ing flows - the main type of turbulent flow - requires the use of fairly flexible turbulence 
models. The study [4] presented the results of calculations of axisymmetric swirling tur- 
bulent jets using the Prandtl mixing length model. The results agreed well with experimental 
findings. In [5, 6] an attempt was made to use the standard k-c model of turbulence to 
numerically study swirling flows (k is the kinetic energy of the pulsating motion and E is 
the rate of dissipation of pulsative energy). This model has proven to be useful in calcula- 
tions of simple shear flows. However, use of the standard k-c model in the case of fairly 
intensive swirling has led to a significant deviation from the experimental results. The 
authors of [6] explain this discrepancy by citing the anisotropy of eddy viscosity, although 
the standard turbulence model they used does not even take into account the expressions for 
the fluctuation moments which appear due to swirling and make a description possible within 
the framework of an isotropic model. It was noted in [7] that one way of further improving 
turbulence models for swirling flows is modifying the k-~ model in different ways. 

In [8-12], corrections were proposed for the traditional two-parameter model~ As noted 
in [12], all of the modifications proposed earlier for the k-~ model proved unsuitable for 
calculating bounded swirling flows. The approach taken by the authors of [12] consisted of 
selecting optimum values of the empirical constants of the energy-dissipation model to study 
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